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SUMMARY 

This paper deals with the numerical solution, using finite difference methods, of the hydrodynamic and 
turbulence energy equations which describe wind wave and tidally induced flow. 

Calculations are performed using staggered and non-staggered finite difference grids in the vertical, with 
various time discretizations of the production and dissipation terms in the turbulence energy equations. I t  is 
shown that the time discretization of these terms can significantly influence the stability of the solution. The 
effect of time filtering on the numerical stability of the solution is also considered. The form of the mixing 
length is shown to significantly influence the bed stress in wind wave problems. 

A no-slip condition is applied at the sea bed, and the associated high-shear bottom boundary layer is 
resolved by transforming the equations onto a logarithmic or log-linear co-ordinate system before applying 
the finite difference scheme. 

A computationally economic method is developed which remains stable even when a very fine vertical grid 
(over 200 points) is used with a time step of up to 30 min. 

K E Y  WORDS Finite difference Hydrodynamic Turbulence energy Tidal Wind wave 

1. INTRODUCTION 

In a shallow homogeneous sea region, a major source of turbulence is that produced in the near- 
bed region, arising from flow over a rough sea bed. Currents associated with wind, tidal and wave 
induced motion are the primary source of this t u r b ~ l e n c e . ' ~ ~  

In this paper we shall be concerned with the calculation of turbulence energy and current 
profiles produced by oscillatory motion of tidal period (of order 12 h) or  wind wave period (of 
order 10 s). Motion at these different periods is specifically chosen to illustrate the range of bottom 
boundary layer thicknesses that can occur in a shallow sea and the associated numerical problems 
that arise in resolving them. 

Analytical calculations have usually parametrized the internal shear stress in terms of a 
coefficient of eddy viscosity. Also, these models have in general only considered a single point in 
the vertical. Such models, together with near-bed  observation^,^ clearly show a very-high-shear 
bottom boundary layer, which will have to be accurately resolved in any numerical solution of the 
turbulence energy equations. 

Larger-scale three-dimensional hydrodynamic models of tidal flow have related the coefficient 
of eddy viscosity to the flow field, with eddy viscosity varying with time and horizontal position.6, 
However, in these models the high-shear bottom boundary layer was not resolved explicitly, but 
rather a slip condition was applied at a height of 1 m above the bed. It is interesting to note that 
despite their inability to take account of the detailed physics of the near-bed region, these models 
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have been very successful in reproducing tidal current structure over large areas such as the 
Northwest European Continental Shelf. However, because these models do not resolve the near- 
bed region, it is not possible to use them to study the nature of near-bed turbulence. 

In recent years, turbulence energy models have been used successfully to study tidal current 
structure at a point899 and in estuaries and channels.43 l o  However, despite recent advances in 
computer power, application to a large-scale tidal region such as the Northwest European Shelf 
requires computationally accurate and efficient solution in both space and time in order to be 
feasible. (Similar considerations are also true of any study of wave-current interaction owing to 
the significantly finer horizontal grids that are required.) In this paper the first stage in the 
development of such a large-scale (i.e. shelf-scale) turbulence energy model, namely the investiga- 
tion of the accuracy and stability of various finite difference solutions, is considered. Here we 
present a number of numerical methods that can be used to solve the turbulence energy equations 
for wave and tidally induced motion at a point. 

Section 2 of this paper describes the turbulence energy equations and various forms of the 
mixing length. In Section 3 various numerical methods are presented for the solution of these 
equations, and in Section 4 the numerical stability and accuracy of the solutions for both wave and 
tidally induced currents are examined in some detail. 

Some discussion of the influence of mixing length upon current profiles, viscosity profiles and, in 
particular, bed stress, together with a detailed assessment of the stability and accuracy of various 
difference schemes, is presented in the latter part of the paper. 

In essence the paper reviews and compares and contrasts different methods of solving the 
turbulence energy equations for two different geophysical flow regimes, namely tides and wind 
waves. 

2. MODEL EQUATIONS 

The linear hydrodynamic equations at a point can be written as 

--fv=-+- ap a ( 8,) au 
at ax aZ % 7 

a p  ay aZ a ( i:) av 
-+fu=-+- p -  . 
at 

In these equations, u and v are the x- and y-components of current in a Cartesian co-ordinate 
system, with z, the vertical co-ordinate, having its origin at the sea bed and increasing upwards. 
The Coriolis parameterfis constant and p denotes the coefficient of vertical eddy viscosity, with P 
the externally specified pressure forcing. 

For sinusoidally induced pressure forcing at a point, it is convenient to express BP/ax and 
a w a y  as 

(3) 

ap 
-= h,w cos (at) 
aY 

with h, and h, denoting the amplitude of the external forcing and o its period. 
A no-slip boundary condition is applied at the sea bed; thus 

u=O and u = O  at z = z o ,  

with z,, the roughness length. 

(4) 

( 5 )  
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For wave and tidally induced flows, at the sea surface z = h (with h the water depth) a zero-stress 
condition is applied; thus 

We now consider the calculation of the eddy viscosity p in terms of a mixing length 1 and 
turbulence energy b determined from 

with the turbulence dissipation E computed from 

E = C b3/' 11 (8) 

p =  Colb'i2. (9) 

and the eddy viscosity given by 

Values of the coefficients 8, C, and C, have been given by Vager and Kagan* as 8=0.73, C, 
= C1l4 and C, = C i ,  where C=0.046. Mofjeld and L a ~ e l l e , ~  however, take C,=(15)- 1'3. 

Although there are some slight differences in these coefficients, King et a1.' found that they made 
little difference to the levels of turbulence and current profiles induced by tidal or  wave forcing. 

Various algebraic expressions for the mixing length are presented in the literature and a number 
of them are considered here. 

The simplest form of the mixing length is one in which it increases linearly with height above the 
sea bed; thus 

I=K(z,+z), (10) 

with K =0.4 being Von Karman's constant. 
Vager and Kagan' give an expression for 1 which on integration'0s'' gives 

with b, denoting the turbulence energy at the sea bed. It is evident that ( l l ) ,  unlike the earlier 
expression (lo), yields a mixing length that depends upon the turbulence energy intensity in the 
water column. An alternative expression, also depending upon turbulence energy, was proposed 
by Blackadar,12 of the form 

Kz 
1 + Kz/l, ' 

I =  

with 

where y is a constant in the range 01-0.4. 

for turbulence energy are 
For wave and tidally induced flows, appropriate sea surface and sea bed boundary conditions 
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Besides the calculation of the velocity, turbulence energy, viscosity and mixing length fields, it is 
also instructive to calculate stress profiles T~ and T? from 

As we shall show later, this profile reaches a maximum in the near-bed region. In circumstances 
where the finite difference grid used to solve these equations (see Section 3 )  or the time step used to 
integrate them is not sufficiently fine, the bottom stress exhibits time step oscillations, which prove 
to be an early indicator of when instabilities will corrupt the total solution. 

An alternative means of computing the modulus of the bed stress is from 

IT I =pC”’bo, (16) 
with bo the turbulence intensity at the bed. 

Equation (16) can be readily derived from the steady state form of (7) if turbulent diffusion is 
neglected. It is important to note that these assumptions imply that turbulence production and 
dissipation balance, which is not always true. It is, however, interesting to compare the modulus of 
bed stress derived from (15) with that determined from (16), and some examples are given in 
Section 4. 

3. NUMERICAL SOLUTION OF THE HYDRODYNAMIC AND TURBULENCE 
EQUATIONS 

Here we consider the solution of the time-dependent equations (l), (2) and (7) using staggered and 
non-staggered grids in the vertical (see Figure 1, grids A and B). In grid A, vertical differencing of 
the current (i.e. current shear) gives the turbulence production term at the turbulence point. 

3.1. Trunsformation of equations 

Before developing the finite difference solution of these equations, we will briefly consider their 

logarithmic transform 

transformation onto a logarithmic or log-linear co-ordinate system using: 

CT = In ( z / z , ) /c ( ,  (17) 
with 

log-linear transform 

a= ln  (h/z,)+(h-z,)/z , .  (20) 
In (20), z* isan arbitrary height parameter which can be used to determine the height above the sea 
bed over which the grid is essentially logarithmic. 

It can be readily shown from (17) and (18) that 
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with 

x = zOaeaa. (22) 
Using equation ( 1 )  for illustrative purposes, it is evident that substituting (21) into (1) gives the 

transformed equation 

An alternative suggested by King et aL2 is to integrate the term involving p by parts and then 
apply the transformation; thus 

with o = a  in the case of a logarithmic transformation. 
Similarly, transforming (7) gives 

Integrating p by parts then applying the transformation gives 

The transformation of the various mixing length equations given in Section 2 proceeds in an 
analogous manner, and details will not be given here. 

3.2. Finite diference solution (staggered gr id)  

domain and the staggered grid (Figure 1, grid A) in the vertical. 
Consider initially the solution of equation (23) using a Crank-Nicolson-like method in the time 

Thus at the kth grid point 

(27) 

with d u k =  uk+ - uk and A the vertical grid spacing. Also wk= 1/x evaluated at U grid point k 
and w k  = 1 /x evaluated at the midpoint between U grid points k + 1 and k (see Figure 1 ,  grid A), 
with t the time step. 

+ r ( @ i w k 6 u i - P i - l  d2 wk w k - l d u i - l ) ,  

In equation (27) the time-weighting term fll lies in the range Od8, d 1 ,  with O2 = 1-8, .  
The sea bed boundary condition is incorporated in (27) by defining U , = 0. The inclusion of the 

sea surface condition is accomplished by setting U ,  = Urn_ 
In the explicit case (6, =0) a stability analysis based upon a grid resolution of order 0.005 m in 

the near-bed region (necessary in order to adequately resolve the high-shear layer) required a time 
step of order 0.0025 s for a typical p of 0.01 m2 s-  '-clearly impractical. 

In the case in which 61 is non-zero, an implicit solution (6, = 1.0) or a semi-implicit solution (8, 
= 0 5 )  is obtained, which on a regular grid can be shown to be unconditionally stable. The 
application of an implicit or a semi-implicit method, with the grid-differencing given above, leads 
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to the solution of a set of simultaneous equations involving a tridiagonal matrix. Details of the 
form of the matrix equations and solution using the Thomas method are standard and can be 
found in Reference 13. 

Consider the solution of (25): 

Again in this equation the coefficients 8, and 0, can be used to time-centre the term describing 
the diffusion of turbulent energy. The coefficients y1 and y, are such that y,  = 1 -yl, with y1 lying 
in the range O < y ,  < 1. The choice of these coefficients determines the degree of centring of the 
turbulence production term. An alternative finite difference form of this equation is described in 
the Appendix. 

Consider now the temporal form of the dissipation term in (7). Using (8), one possible form, 
which places some of the dissipation at the higher time step, is 

dissipation A 

Alternatively, eliminating I from (8), using (9) and time-centring b gives a fully time-centred form 

dissipation B 

E =  C ,  Cob:+' bi /p:- , .  (30) 
A less obvious time distribution of b, which we shall show later to have good stability properties, is 
to express E as 

dissipation C 

E = C ,  Co[2b:+'b:-(b:)2]/pL:_ (31) 
Surface and bed boundary conditions (14) can be readily accomplished using 

b,  = b,  (bed boundary), b,+ , = b, (surface boundary). 

Solving these equations using an implicit (0, = 1 )  or a semi-implicit (0, =05)  time-differencing 
scheme again yields a tridiagonal matrix problem which is solved in an identical manner to that 
described above. 

Calculation of the mixing length using expressions (lo)-( 13) does not involve a time-stepping 
problem. In the case in which the mixing length depends upon the turbulence energy, its value at 
the new time step was determined from the turbulence energy at this time step, computed by 
solving (28) prior to determining the mixing length. 

Calculation of the eddy viscosity p at the higher time step was accomplished using (9) with 1 and 
b at this higher time step. 

By solving the equations in this order, the velocity field, turbulence energy, mixing length and 
eddy viscosity can be advanced through time. In this sequence of solutions the eddy viscosity p in 
equations (27) and (28) is taken at the lower time step. The eddy viscosity in these equations could 
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be included at a higher time step by essentially a multistep predictor-corrector procedure in which 
(27) and (28) were first solved with p at the lower time step and were then re-solved with p at the 
higher time step. Obviously the determination of p at the higher time step requires the solution of 
the turbulence energy and mixing length equations, with the associated computer overhead. In 
practice this sequence of operations could be performed a number of times until the final p- and 1- 
values at the higher time step were essentially unchanged. However, as is to be expected, this 
iterative sequence of operations is computationally time-consuming, but was found to enhance the 
stability of the solution in some cases (a point discussed in detail in the next sub-section). 

The effect upon stability and accuracy of introducing some time filtering every n time steps was 
also examined (Section 4) using a simple Schuman14 time filter of the form 

F( t )  = F ( t )  + 0.51' [ F ( t  + T )  - 2F ( t )  + F ( t  - T ) ]  , (32) 

F ( t ) = F ( t ) + 0 . 5 ~ [ F ( t + T ) - 2 F ( t ) + F ( t - T ) ] .  (33) 

or the slightly more selective though computationally more expensive filter of Asselin,' given by 

In these equations F(t)  is the new filtered value (current or turbulence energy) at the time step t, 
and v, in the range 0 < v < 1 ,  is the weighting which determines the extent of the filtering. In the 
cases considered later, v = 0.5, giving the conventional 'one-two-one' filter from equation (32). 
Obviously, as is well known," if these filters are applied at  frequent intervals (low n-values), they 
can damp the long waves. Also, since each application of the filter requires an additional forward 
time step to compute F ( t  + T )  and further calculations to compute F(t - 2) for the A ~ s e l i n ' ~  filter, 
frequent filtering can be computationally expensive. 

3.3. Finite dzference solution (non-staggered grid) 

Here we briefly describe the solution of the equations using a non-staggered grid in the vertical 
(Figure 1, grid B) with the Crank-Nicolson time-differencing method. By way of contrast with the 
previous subsection, here we use the form of the equations in which the viscosity term has been 
differentiated by parts, namely equations (24) and (26). 

Considering initially the u-equation of motion (24), at the kth grid point we have 

with wk the value of a ((see equations (18) or (20)) at the kth grid box. 

and the sea surface by setting Urn+ = Urn. 
The sea bed boundary condition is incorporated into (34) by setting U 2  = O  (see Figure 1, grid B) 

Considering the solution of (26), using grid (B) and the Crank-Nicolson method gives 
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Here the same finite difference form of the production term has been used as in (28) for stability 
reasons; alternatives are possible (see Appendix) but are less stable. 

In (35) the operator &is the central difference operation; thus, for example, 8Uk = Uk+ - Uk - ,. 
In an analogous manner to that employed with the staggered grid, we consider three different 
forms of the dissipation term, namely 

dissipation A 

E = C,  b i + ' ( b ~ ) ' ' ' / 1 ~ ,  

dissipation B 

&=C1Cob:+:+'b;/p:,  

dissipation C 
(37) 

Surface and bed boundary conditions can be approximated by 

b ,  = b, (bed boundary), b, + , = b, (surface boundary). 

It is important to note that on the non-staggered grid, unlike the staggered grid, application of 
this boundary condition implies that db/dz = O  at 0.5A above the sea surface and a similar distance 
below the sea bed. However, dbldz can be set to zero on these boundaries by using 

b,=b3, bm+l=bm-l. 
Calculation of the mixing length and eddy viscosity is accomplished in a similar manner to that 

employed with the staggered grid, using values of b for the mixing length, and b and 1 for the eddy 
viscosity at the higher time step. Iteration to give consistent values of p is also possible but 
computationally expensive. 

4. CALCULATION OF WAVE AND TIDALLY INDUCED CURRENTS 

In this section the turbulence energy model described in Section 3, with various formulations of 
the mixing length, is used to calculate the wave or tidally induced current, turbulence energy and 
eddy viscosity. These calculations are used to examine whether there is any significant advantage 
in using a staggered rather than a non-staggered grid. The effect upon numerical stability of the 
various formulations (namely A, B or C) of the dissipation term (equations (29)-(31) or (36)-(38)) 
is also considered. The various forms of the production term (see Appendix) are briefly examined. 
The influence upon the accuracy of the final solution of refining the vertical grid by increasing the 
number of grid boxes, rn, over the range 25,50,100 and 200 using both logarithmic and log-linear 
transformed grids is examined in some detail. In all calculations the bed roughness zo  was fixed at 
0.005 m (a typical shallow sea value3) but the water depth h was varied. 
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4.1.  Wave induced pow, water depth h = 10 m, wave period T =  8 s- ' 
In this calculation, motion was induced by an oscillating forcing in the x-direction, of unit 

amplitude (h, = 1.0 m s-', h,=OO in (3) and (4)) and period 8 s -  (a typical wind wave period). The 
Coriolis term f was zero. It is evident from Figure 2(a) that for such a high-frequency wave the 
bottom boundary layer is of order 0.20 m thick and consequently occupies only a small part of the 
water column. Above this bottom boundary a free stream flow (no variation of current in the 
vertical) is present in which the stress is zero (Figure 2(b)). Obviously a grid transformation giving 
the maximum number of grid points within the high-shear bottom layer (the logarithmic 
transformation) will be optimal for the problem of the wave alone. However, in a physically more 
realistic situation in which, waves, currents and wind induced turbulence would be considered in 
combination, a grid with significant resolution above the bottom layer would be required. (This is 
particularly so for wind induced flow, where a turbulent surface layer  exist^.'^ Also, examples of 
tidal flow requiring adequate grid resolution in the upper part of the water column will be 
presented later.) For this reason and also for computational economy it is important to examine 
the accuracy of the solution for vertical grids of various resolutions (i.e. a range of m-values) and 
different transformations. 

In an initial series of calculations a time step t of 0.05 s was employed. Since the method is 
implicit, in theory stability is assured for any time step. Such a small time step was used so that 
time discretization errors would not influence the solution. The calculation was started from a 
state of zero velocity, although the eddy viscosity p, turbulence energy b and mixing length I were 
assigned small initial values, namely p =  1.0 x lop6 m2 s - l ,  b= 1.0 x m2 s - ~  and I =  1.0 
x low6 m, in order to avoid division by zero in the turbulence equations (see Section 2) and the 
possibility of negative turbulence energy in the first few time steps. After five or six wave periods 
(time T=48 s for an 8 s wave) the effect of the initial conditions had been removed. However, the 
solution was integrated up to 120 s before being harmonically analysed to ensure the complete 
removal of any transients. Values of the amplitude of the fundamental harmonic of the current at 
various heights above the bed, together with instantaneous values of stress, viscosity, turbulence 
energy and mixing length at time T= 1560t (t =0.05 s), are given in Table I. Also shown in the 
table are values of the maximum bed stress over a wave cycle computed using either (a) the vertical 
derivative of the current at the bed (equation (15)) or (b) the turbulent energy (equation (16)). 
These bed stress values computed with the mixing length of Vager and Kagan' are in excellent 
agreement with recently published3 independent calculations. 

Table I shows the influence of reducing the grid resolution from m = 200 grid boxes to m = 100 
and finally m = 25 grid boxes. The mixing length formulation of Vager and Kagan* ((equation (1 1)) 
was used in this calculation. From this table it is evident that reducing m from 200 to 100 and 
changing from a logarithmic transform (the optimum one for this problem) to a log-linear 
transform (2, = 0 5  in sigma co-ordinates) did not significantly influence the solution (compare the 
first two sets of values in Table I). A further reduction in the number of grid boxes to m=25 does 
have some effect upon the accuracy of the solution, especially the value of the mixing length at  a 
height of 0.1 (see Table I) above the bed. This is to be expected since the mixing length depends 
upon the integral of the turbulence up to a given height, and as the grid resolution is reduced, 
accuracy will also diminish. 

Computed values determined using the staggered grid (Figure 1, grid A) in the vertical are also 
shown in the table. These were not significantly different from those computed using the non- 
staggered grid. This is particularly important since it confirms that the solution is independent of 
the finite difference method used and suggests, together with the previous results, that an accurate 
solution has been obtained. 
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Figure 2. Profiles over a wave period on a transformed co-ordinate of (a) current velocity and (b) shear stress computed for 
a wave of period T= 8 s in a water depth h= 10 m using the mixing length formulation of Blackadar with y=O.4 
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Table I. Influence of grid resolution upon wave results computed using the mixing length of Vager and 
Kagan.’ Instantaneous values are at a time 15607 (~=0.05 s) from the start of the calculation 

Max. bed 
stress 

s=z/h-co-ord. h ( m s - ’ ) x 1 0 2  T ( N ~ - ~ )  p ( m 2 s - ’ ) x 1 0 4  h(ms-’)x102 l(m)x 10’ (Nm-’) 

m = 200, non-staggered logarithmic grid 
0.00 1 28.78 20.09 5.54 9.1 1 0.40 (a) 23.95 
0.0025 65.19 18.22 12.18 
0.1 100~00 0.0 1 10.70 0.03 14.43 

m = 100, non-staggered log-linear grid 
0.00 1 28.19 19.81 5.41 
0.0025 65.09 18.19 12.16 7.79 0.94 (b) 22.24 
0.1 100~00 0.0 1 8.54 0.02 12.80 

m = 25, non-staggered log-linear grid 
0.00 1 28.1 8 19.95 5.50 9.03 0.39 (a) 22.97 
0.0025 65.57 18.29 12.26 7.82 0.95 (b) 22.19 
0.1 100~00 0.00 2.94 0.0 1 5.48 

m = 100, staggered log-linear grid 
0.001 28.64 20.09 5.79 9.1 5 0.4 1 (a) 23.94 
0.0025 65.09 18.05 1262 7.92 0.98 (b) 22.29 
0.1 100~00 0.0 1 9.56 0.04 14.12 

7.79 0.94 (b) 22.32 

9.10 0.39 (a) 23.21 

Values of the parameters shown in the table were also computed with a fixed mixing length, one 
increasing linearly with height above the bed (equation (10)) and that given by Blackadar” with y 
=0.4. These calculations did not show a significant difference between the results computed with 
this mixing length, that of Vager and Kagan, and that of Blackadar with 1~=0.4 (see Table TI). 
However, solutions computed with Blackadar’s mixing length with y = 0.1 were significantly 
different from those determined previously (see Table 11). It is evident that with y =0.1 the stress, 
viscosity and mixing length are significantly reduced below those obtained previously (compare 
Tables I and 11, and Figures 2 and 3). It is evident from a comparison of Figures 2(b) and 3 that 
reducing y from 0.4 to 0.1 reduces the magnitude of the bed stress and the thickness of the wave 
boundary layer. However, the increase in boundary layer thickness with increasing y is important 
numerically in that the region of higher grid resolution should be larger if the boundary layer is 
larger. 

Since the form of the mixing length given by Blackadar” is significantly different from that of 
Vager and Kagan,’ it can be used as another check of the independence of the solution from the 
grid (i.e. whether a non-staggered or staggered grid is employed). It is evident from Table I1 with m 
= 100 that there is no significant difference in the results computed using either the staggered or 
non-staggered grid. Consequently, the difference in solutions between those computed with y = 0.4 
and 0.1 is physically realistic and of some importance. The difference in bed stress is particularly 
important in any problem where the magnitude of the bed stress is crucial, e.g. sediment transport 
problems. 

In these calculations a time step of 0.05 s was used with turbulence production given by 
equation (41) (see later for a discussion of this). No significant difference (see Table 111) between the 
solutions computed using the various dissipation formulations (A, B or C) was obtained. (In fact, A 
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Table 11. Influence of the parameter y in the mixing length formulation of Blackadar" upon computed 
properties of the wind wave. Instantaneous values are at a time 15602 (t=0.05 s) from the start of the 

calculation 

Max. bed 
stress 

s=z/h-co-ord. h(ms- ')xlO' r (Nm- ' )  ~ ( m 2 s ~ ' ) x 1 0 4 b ( m s ~ ' ) x 1 0 2  I(m)x lo2 (Nm-')  

m = 100, y = 0.4, non-staggered log-linear grid 
0.00 1 29.07 18.85 
0.0025 66.47 16.76 
0.10 100~00 0.00 

m =  100, y =0.I, non-staggered log-linear grid 
0.00 1 35.62 6.63 
0.0025 91.28 3.49 
0.10 100.00 0.00 

m= 100, y = @ I ,  staggered log-linear grid 
0.00 1 36.14 6.74 
0.0025 90.67 3.33 
0.10 100.00 0.00 

5.14 
10.89 
9.8 1 

1.35 
1.26 
0.00 

1.40 
1.28 
0.00 

11.25 
9.49 
0.00 

4.1 1 
2.06 
0.00 

4.20 
2.32 
0.00 

0.38 (a) 23.31 
0.87 (b) 21.78 
5.79 

0.16 (a) 10.70 
0.2 1 (b) 9.88 
0.27 

0.17 (a) 10.94 
0.23 (b) 9.93 
0.28 

SHEAR STRESS ( N  m-') 
Height (m) - 1 5 .  - 5 .  

6 97 

5. 1 0 .  1 5 .  
/ , , , , , , , , , ~  I 

Figure 3. As for Figure 2(b) but with y=O. l  
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Table 111. Influence of time step 7 and finite difference form of turbulence 
dissipation upon numerical stability. Values shown in the table are maximum 
bed stress (7) and amplitude of the fundamental harmonic for a wave of 8 s 
period in a water depth h = 10 m. The mixing length of Vager and Kagan' was 

used in the calculation 

Vertical co-ordinate s = z J h 
(a) (b) s = 0.001 s=o.o1 

Diss. 7(s) s(N m-') s(N m-') U(m s- ')  x 10' U(m s- ' )x  10' 

A 0.05 
B 
C 
A 0.20 
B 
C 
A 0.40 
B 
C 

23.31 
23.3 1 
23.21 
23.39 
23.39 
22.95 
26.18 * 
26.18 * 
22.20 

22.38 
22.38 
22.24 
22.38 
22.38 
21.71 
22.81 * 
22.8 1 * 
20.99 

28.15 
28.15 
28.19 
28.45 
28.45 
28.61 
28.80 
28.80 
29.08 

~~~~ ~- 

103.9 
103.9 
104.0 
104.5 
104.5 
104.8 
105.5 
105.5 
105.9 

* Indicates that the computed solution exhibited time step oscillations in the bottom 
stress. 
(a) Bed stress computed using equation (15); (b) computed using equation (16). 

and B gave identical solutions.) However, in any longer-period calculation it would be 
computationally economical to use as long a time step as possible, and for this reason a range of 
calculations were performed with T taking values 0.2 and 0.4 s, again with each form of the 
dissipation term (Table 111). 

It is apparent from Table I11 that using a time step r=0.2 s with dissipation from A, B or C 
yieldsd a solution which was only slightly different (a difference of less than 2%) from that 
obtained with T =0.05 s. However, when the time step was increased to t=0.4 s the bed stress 
computed using vertical differencing (equation (15)) with dissipation forms A and B showed a 
slight time step oscillation in the bed stress (of order 5% of the bed stress). This oscillation was not 
found in the solution using dissipation form C. However, in all cases the bed stress computed with 
~ = 0 . 4  s (although not the currents) was significantly different from that computed with ~=0-05 s. 
This difference and the presence of time step oscillations in the bed stress suggest that the use of 
such a large time step ( T  = 0.4 s) gives physically unacceptable solutions. However, dissipation 
forms A, B and C appeared equally acceptable in the wave problem. We will, however, show that 
this is not true for tidally induced turbulence. 

4.2. Tidally induced p o w ,  water depth = 10 m, wave of M, tidal period ( T =  12.42 h) 

It is evident from the previous calculation that for wind waves having a period of 8 s - l  the 
bottom boundary layer has a thickness of order 0.20 m. However, for much-longer-period waves 
(e.g. tidal waves) a significantly thicker boundary layer occurs, which in shallow water can occupy 
the whole water column (see Figure 4(a)). In tidal problems the influence of rotation cannot be 
neglected as in the case of wind waves. However, in an initial series of calculations we will consider 
a rectilinear tidal flow, which might occur in a narrow channel, and neglect the influence of 
rotation. 



TURBULENCE ENERGY EQUATIONS FOR WAVE AND TIDAL FLOWS 31 

VELOCITY (m s-I) 

Figure 4. (aHb) 



32 A. M. DAVIES A N D  J.  E. JONES 

TURBULENCE ENERGY (rnzs-2) 
Height(m) 0 .  0 .002 0 . 0 0 4  0 .006 
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Figure 4. Profiles over an M2 tidal period of (a) current, (b) shear stress, (c) eddy viscosity and (d) turbulence energy 
computed in a water depth h =  10 m using the mixing length formulation of Blackadar with y=O.4 

Figure 4(a) shows the current velocity over a tidal cycle induced by a sinusoidal oscillation of 
unit amplitude. It is evident from Figure 4(a) that in this case, in contrast to the wave problem, the 
boundary layer extends to the water surface. It is apparent that the maximum surface current is 
significantly less than the 1 m s - l  that would occur if the boundary layer thickness was less than 
the water depth (i.e. the wave problem). Also, for the tidal problem there is a non-zero stress (see 
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Figure 4(b)) through the water column, with zero stress only occurring at the surface because of 
the imposed boundary condition (equation (6) ) .  (The small non-zero surface stress shown in 
Figure 4(b) is due to the finite difference implementation of the surface boundary condition, which 
gives a zero stress slightly above the water surface.) 

It is evident from Figure 4(b) that the stress profile is almost linear (particularly at its maximum 
value) throughout the water column. However, close to the bed some small physically unrealistic 
oscillations are evident, and just at the bed the stress falls slightly below its maximum value. These 
oscillations in stress remain small provided rn is of the order of 100-50. However, if rn is reduced 
significantly below 25, large physically unrealistic oscillations can occur. 

Calculations (Table IV) and plots (Figures 4(c) and 4(d)) clearly show that the viscosity and 
mixing length are much larger than in the wave problem, with both eddy viscosity and turbulent 
energy having significant values in the upper part of the water column, in marked contrast to the 
wave problem. A detailed discussion of the physical reasons for this is beyond the scope of this 
paper. However, the physical nature of this problem is sufficiently different from the previous one; 

Table IV. Amplitude of M, tidal current and instantaneous values after 33202 (z = 372.62 s) computed with 
various grid resolutions and a range of mixing lengths. A non-staggered finite difference grid was used in the 

calculations and the water depth was h = 10 m 

z(s-co-ord) h,(ms-') x lo2 .t(N m-') p(mZ s - ' )  x lo4 b(m s-')x 10' 

m = 100, mixing length linearly increasing as K (z + zo) ( I  = 2.5) 
0.0 1 27.4 1 1.025 12.81 0.4 7 8 
0.25 55.86 0.801 277.4 0.367 
0.75 68.34 0.283 182.3 0.154 

m = 100, mixing length of Vager and Kagan' 
0.0 1 27.68 1.027 12.79 0.478 
0.25 57.13 0.786 258.5 0.360 
0.75 65.48 0.276 522.8 0.208 
m=100, mixing length of Blackadar'2 with y=O.4 
0.01 27.03 1.024 12.56 0.627 
0.25 59.46 0.804 179.1 0.482 
0.75 73.68 0.286 206.7 0.2 13 
m=100, mixing length of Blackadar" with y = O . I  
0.0 1 24.10 0.952 11.16 0.569 
0.25 66.00 0.742 79.04 0.443 
0.75 97.74 0.262 59.06 0.160 
m=25,  mixing length of Vager and Kagan' 
0.01 28.89 1.099 13.09 0.5 17 
0.25 59.16 0.845 266.3 0.381 
0.75 67.89 0.330 542.9 0.224 
m=25, mixing length of Blackadar12 with y = O . l  
0.0 1 24.2 1 0.966 11.24 0.579 
0.25 66.00 0.770 81.56 0.459 
0.75 98.35 0.312 65.39 0.189 

Max. bed 
stress 

l(m) x lo2 (N m-,) 

4.00 
98.93 

100.20 

3.99 
92.99 

247.3 

3.9 1 
63.62 

110.50 

3.65 
29.28 
36.38 

3.93 
9293 

247.5 

3.65 
29.7 1 
37.16 

(a) 1.304 
(b) 1.315 

(a) 1.317 
(b) 1.338 

(a) 1.245 
(b) 1.271 

(a) 0.985 
(b) 0.996 

(a) 1.472 
(b) 1.472 

(a) 1,048 
(b) 1.033 
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that is, it presents a further independent test of the influence of mixing length, grid differencing and 
time stepping upon the accuracy of the solution. 

Values of the amplitude of the first harmonic, together with instantaneous values of stress, 
viscosity, turbulence energy and mixing length at t = 33207 (z = 372.62 s), a time of near-maximum 
surface current, are shown in Table IV for a range of mixing lengths. The majority of values 
presented in this table were computed using m = 100: Calculations showed that these results were 
not different (to the accuracy shown in the table) from values computed using m = 200 grid points, 
and in practice reducing m to 50 gave values which were not significantly different. However, a 
further reduction to m = 25 (see later values in Table IV) did have a noticeable affect, although in a 
comparison of model results with field data (where current accuracy can usually only be 
guaranteed to the order of 1-2 cm s-’) ,  errors in the model would probably be comparable with 
those in the field data. 

It is evident from Table IV that currents and stresses computed using a fixed mixing length and 
that given by Vager and Kagan’ are only slightly different. The eddy viscosity and turbulent 
energy, though similar in the near-bed region, are significantly different higher in the water 
column. However, in the upper part of the water column the velocity gradient is small (see 
Figure 4(a)) and differences in viscosity do not significantly influence the stress profile or velocity 
field. 

The mixing length formulation of Blackadar” with y = 0.4 yields velocity and stress profiles 
similar to those obtained using a fixed mixing length or that given by Vager and Kagan’ (see 
Table IV). However, when y is reduced to 0.1 a significant difference can be seen (see Table IV). 

A comparison of results computed using the staggered and non-staggered finite difference grids 
with m =  100 (Tables IV and V) confirmed that the solutions were independent of the grid. Also, 
there did not appear to be any significant advantage in using one grid compared to the other, in 
that both gave results of comparable accuracy with m = 100. When m was reduced to 25, both grids 

Table V. Instantaneous values after 33207 (5  = 372.62 s) of velocity, stress, viscosity, turbulence and mixing 
length for the M2 tide in a water depth h = 10 m, calculated using a staggered grid in the vertical 

s = z / h  U 7 P b 1 

m = 100, mixing length of Vager and Kagan’ 
0.01 22.89 0989 13.13 0.46 1 4.18 (a) 1.324 
0.25 47.35 0.743 258-2 0.348 95.47 (bf 1-308 
075 54.18 0.232 510.5 0.198 250.3 

m=2.5, mixing length of Vager and Kagan’ 
001 21.94 0.937 14.67 0.439 4.79 (a) 1.271 
025 45.69 0.677 265.6 0.335 103.1 (b) 1.265 
0.75 52.19 0.141 496.6 0.185 260.1 

m=100, mixing length of Blackadar” with y = O . l  
0.0 1 23.13 0.933 11.52 0.560 3.80 (a) 1.019 
0.25 63.23 0.717 77.57 0.438 29.21 (b) 0-993 
0.75 95.60 0.220 53.95 0 1 5 3  35.96 

m=25, mixing length of Blackadar” with y=O.1 
0.0 1 22.72 0.904 12.69 0.547 4.24 (a) 0.987 
0.25 62.70 0668 75.10 0434 29.27 (b) 0.980 
0.75 94.56 0.144 43.20 0.155 35.29 
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showed a similar loss of accuracy in the solution (compare Table V with Table IV). (It was hoped 
at one time that one grid might have been more accurate at low grid resolution than the other, 
leading to a preference for one grid over the other.) However, it is apparent from a comparison of 
Tables IV and V that as m is reduced from 100 to 25, the currents computed with the non- 
staggered grid are slightly increased whereas those computed with the staggered grid are slightly 
reduced. This occurs using both the mixing length formulation of Vager and Kagan’ and that of 
Blackadar.” There does not appear to be any obvious reason for this, and the differences between 
solutions in Tables IV and V suggest that a value of rn in excess of 25 should be used in order to 
obtain an accurate solution. 

In these calculations the finite difference form of the dissipation term (form C) given by 
equations (31) and (32) was used together with the turbulence production term (41) and a time step 
of 37262 s. This form of dissipation, production and time step was arrived at after a number of 
calculations, as shown in Table VI. In an initial series of calculations a number of different 
formulations of the turbulence production term were used (see Appendix). Initially finite difference 
form (40) was applied with y1 = 1.0, y 2  = 0.0 and subsequently with y 1  = y 2  = 0.5. In both these cases 

Table VI. Bed stress and analysed amplitude of the M, tide in a water depth h = 10 m, computed using a 
log-linear grid with the mixing length of Vager and Kagan’ for various forms of turbulence dissipation and 

time averaging 

Finite differ- 
ence form of 
dissipation 

Current amplitude (m s - ’ )  
x 10, at height z Bed stress 

(N m-’) above sea bed 

m=100 

A 46.58 1.263 1.291 27.34 65.2 1 
B 46.58 1.263 1.29 1 27.36 65.25 
C 46.58 1.266 1.294 27.38 65.30 
A 93-16 co co 00 00 
B 93.16 co 00 00 co 
C 93.16 1.270 1.300 27.39 65.48 
C 186.3 1 1.288 1.312 27.48 65.74 
C 372.62 1.317 1.338 27.68 66.29 
C 558.93 1.347 1.367 27.98 67.14 
C 745.24 1.389 1.394 28.22 67.78 
C 1490.48 1.490 * 1.470 * 29.27 70.42 

m=25 with time averaging 
Frequency of 

time averaging 
A, €3 10 93.16 1.41 1 1.421 28.59 68.12 
A, B 10 372.62 1.460 * 1446 * 28.76 68.60 
A, B 10 558.93 2.317* 1.598 * 28.82 68.79 
A, B 3 93.16 1.409 1.420 28.61 68.15 
A, B 3 372.62 1.507 * 1.490 * 28.72 68.50 
A, B 3 558.93 1.586 * 1.729 * 28.66 68.52 
A, B 3 745.24 2.607 * 1.470 * 29.34 69.34 

co Indicates values exceeded physically realistic values. 
* Indicates existence of time step oscillations. 
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large time step oscillations occurred in the computed bed stress even with the time step T reduced 
to 93.16 s. Subsequently the form of turbulence production given by equation (41) with y1 = y 2  
= 0.5 was used together with formulation C for the turbulence dissipation. This gave solutions 
which with time steps up to 745 s did not exhibit time step oscillations in the computed bed stress. 
The reason for the enhanced stability of the finite difference form (41) is not clear. It is evident from 
(41) that by linearly combining the shear at time t + z with that at t ,  with y1 = y 2  = 0.5, then any time 
step wave will be removed before the shear is squared. Such a time step wave would not, however, 
be removed by (40), since the shear is squared before being averaged in time. This difference may be 
part of the reason why difference scheme (41) is more stable. 

Table VI shows values of maximum bed stress computed using equations (15) (column (a)) and 
(16) (column (b)), together with the amplitude of the M, harmonic of the current at  heights ofO.1, 1 
and 10m (free surface) above the bed. The various finite difference forms (A, B and C )  of the 
dissipation term were used in these calculations, together with a range of time steps. 

Initially no form of iteration or time smoothing was applied. Under these conditions 
calculations showed that the finite difference forms A and B of the dissipation term were only 
stable with time steps of order 46 s (without iteration or time filtering) and that the solution with 
this time step was essentially independent of the finite difference form of the dissipation term 
(Table VI). At larger time steps only dissipation form C was stable; however, at time steps of the 
order of 1490 s (approximately 24 min) the error in the solution was unacceptably large owing to 
time discretization errors. (This is to be anticipated, since one would not expect to accurately 
reproduce a wave period of the order of 12 h with a time step of order 0.5 h.) However, it is 
interesting to note that dissipation form C remained stable at these large time steps and that with a 
time step of order 372 s gave an accurate solution. (In a large-scale three-dimensional model a time 
step of order 10 min would appear appropriate, giving rise to an inaccuracy in surface current only 
of the order of 2 cm s- l  and 5" in phase.) 

These calculations were performed using 100 grid points in the vertical. With reduced resolution 
(m=25) (TableVI) dissipation forms A and B yielded stable solutions with time steps up to 
745.24 s provided some time filtering was included (Table VI). In practice this time filtering was 
included using the Schuman14 filter, since this avoided the computational overhead of having to 
compute the F ( t - z )  term in the Asselin15 filter. It is evident from Table VI that with m=25, z 
= 372.62 s and time averaging every third or 10th time step, numerical stability could be enhanced 
with dissipation forms A and B, although some oscillations in the bed stress were still present. 
However, it is evident from Tables V and VI that the maximum bed stress obtained with m= 25 is 
physically unrealistically high and may be unacceptable in some applications. 

The dissipation forms A and B could also be used with longer time steps provided some 
iteration was performed on the viscosity and mixing length. However, the computational time was 
similar, as one would expect, to that obtained by reducing the time step. 

In order to appreciate in some detail the origin of the instabilities which occur with dissipation 
forms A or B, it is instructive to examine the time series of current and bed stress prior to the 
instabilities corrupting the solution. Figures 5(a) and 5(b) show time series of currents at various 
depths (a depth of 0.01 m corresponding to a height of eight grid points from the sea bed) and 
modulus of bed stress computed with dissipation form A and a time step of 258.76 s. A water depth 
h =  10 m, the mixing length of Blackadar" with y=O.4, and 100 grid points were used in the 
calculation. The time series shown here was obtained approximatGly two tidal cycles before the 
solution was corrupted by instabilities. Values were plotted at each time step and no filtering or 
time smoothing was applied. 

It is evident from Figure 5(a) that there is a significant time step oscillation in the near-bed 
current, and evidence of this was found higher in the water column. The modulus of bed stress 
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computed from (15) showed severe time step oscillations (see Figure 5(b)), which eventually 
corrupted the solution. An instantaneous profile of the stress also showed significant grid point 
oscillations through the vertical, having maximum oscillations close to the bed. In contrast, 
Figure 5(c) shows the bed stress after many tens of tidal cycles, for the same problem but with 
turbulence dissipation C .  

These calculations clearly identified the finite difference forms of the turbulence production and 
dissipation terms as being crucial in determining the stability of the solution. 

In a final series of calculations, rotational effects were included, withf=ON)012 s-’ ,  typical of 
the North Sea. As would be expected, the influence of rotation did not affect the stability of the 
solution or its accuracy. 

I 1 
0 T 2 T  PERIOD 

6 lT ZlT PERIOD 

Figure 5. (aHb) 
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Figure 5. Time series of (a) tidal currents at four depths, (b) modulus of bed stress computed with turbulence dissipation 
form A and (c) modulus of bed stress computed with turbulence dissipation form C. Calculations are for an M, tide in a 

water depth h =  10 m using Blackadar’s mixing length with y=O.4 

4.3. Tidally inducedjow, water depth h = 100 m, wave of M ,  tidal period (T= 12-42 h) 

In the previous series of calculations the water depth h was taken as h = 10 m, typical of a near- 
coastal region. However, in a large-area continental shelf model, water depths ranging between 
10 m and several hundred metres will occur. To test the stability and accuracy of the various finite 
difference methods, and the influence of mixing length formulation upon the solution, a final series 
of calculations were performed for a rectilinear tidal flow induced by unit forcing in a water depth 
of 100m. 

Values of amplitude of the first harmonic, together with instantaneous values of velocity, stress, 
viscosity, turbulence energy and mixing length at t = 33202 (z = 372.62 s), a time of near-maximum 
surface current, are shown in Table VII. Various formulations of the mixing length were used in 
these calculations, together with a number of values of m, both on logarithmic and log-linear 
transformed co-ordinates. 

Calculations showed that even in a depth of 100 m, the tidal current only reached its free stream 
value close to the sea surface and that a non-zero stress occurred below the surface layer. 

Values of eddy viscosity and mixing length were found to be significantly larger (see Table VII) 
in the near-surface region in this example than in the case of a water depth of 10 m. Consequently 
this calculation provides a further test of the accuracy of the various difference schemes in a highly 
viscous flow regime (see viscosity values in Table VII). 

Calculations using the various mixing lengths presented in Section 2, with the turbulence energy 
dissipation form C, with m = 100 and z = 372.62 s are presented in Table VII, together with some 
results computed with m = 200. In all cases the calculations remained stable, and no significant 
increase in accuracy was obtained when m was increased from 100 to 200 grid points (see 
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Table VII. Amplitude of M, tidal current and instantaneous values after 33202 (t = 372.62 s) computed with 
various grid resolutions and a range of mixing lengths in a water depth h = 100 m 

Max. bed 
stress 

s-co-ord. h(m s- ’ )  x 10’ t(N m-’) p(mZ s - l )  x lo4 b(m s-’) x 10’ l(m) x 10’ (N m-’) 

m = 100, mixing length linearly increasing as K ( z  + zo) ( I  = 25) 
0.00 1 34.18 1-868 16.83 0.825 
0.1 85.68 1.438 1411.0 0.580 
0.25 9455 0940 2739.0 0350 

m = 100, mixing length of Vager and Kagan’ 
0~00 1 3410 1.768 16.44 0.795 
0.1 8614 1.388 1297.0 0573 
0.25 95.96 093 1 2240.0 0.349 

m= 100, log-linear grid, mixing length of Blackadar12 with y=0.4 
0.00 1 32.25 1.681 15.92 0.969 
0.1 83.14 1.196 1017.0 0.640 
0.25 94.37 0637 1358.0 0.320 

m= 200, logarithmic grid, mixing length of Blackadar” with y =0.4 
0.00 1 32.17 1.681 15.9 1 0.968 
0.1 8309 1.200 1018.0 0.64 1 
0.25 94.32 0638 1361.0 0.321 

m= 100, log-linear grid, mixing length of Blackadar“ with y =O.I 
0~001 29.00 1.412 14.54 0.826 
0.1 82.55 0812 463.6 0.460 
0.25 9958 0153 270.5 0.087 

m =200, logarithmic grid, mixing length of Blackadar” with y =0.1 
0.00 1 28.95 1.412 14.54 0.825 
0.1 82.52 0814 464.2 0.46 1 
0.25 9956 0156 272.5 0.088 

4.00 
400.0 

1 o00.0 

3.98 
369.9 
818.4 

3.99 
3 13.6 
592.2 

3.99 
313.6 
592.3 

3.95 
168.6 
225.7 

3.95 
168.6 
225.8 

(a) 2.034 
(b) 2.038 

(a) 1.972 
(b) 2.011 

(a) 1.779 
(b) 1.783 

(a) 1.791 
(b) 1.774 

(a) 1.423 
(b) 1.426 

(a) 1.438 
(b) 1.420 

Table VII) and the transformation changed from log-linear to logarithmic in order to enhance 
near-bed resolution. 

It is evident from Table VII that the eddy viscosity increases rapidly with height above the bed 
in the cases of a linearly increasing mixing length and that of Vager and Kagan.* A similar increase 
occurs with the mixing length of BlackadarI2 when y = 0.4, although when y =0.1 an increase and 
subsequent decrease occur (Table VII). It is evident from Table VII that the maximum bed stress 
computed with y = 0 1  is significantly lower than with the other mixing lengths. To test that this 
was physically realistic and as a further check on the accuracy of the solution, the calculations 
using y = 0 4  and 0.1 were repeated with the logarithmic transformation (which gave maximum 
near-bed resolution) with m= 200. It is evident from Table VII that this gave no significant change 
in the accuracy of the results. 

These calculations show that there are significant differences in the magnitude of the eddy 
viscosity in shallow and deep water, and that its magnitude does depend upon the mixing length 
formulation. A highly accurate solution can be obtained with m = 100, and solutions of acceptable 
accuracy with m of order 25-50. 
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5. CONCLUDING REMARKS 

In this paper we have investigated the accuracy and stability of a number of finite difference 
schemes for the solution of the turbulence energy equations describing wave and tidally induced 
motion. The primary aim here has been to develop a stable, accurate and computationally efficient 
method that can be used in the three-dimensional simulation of tides in large sea areas such as 
continental shelves.' The numerical schemes developed here will also be useful in more limited 
area simulations of the interaction of waves and currents. 

Calculations have shown that accurate solutions can be obtained using staggered or non- 
staggered finite difference grids in the vertical, with the order of 50 grid points from sea bed to sea 
surface. The transformation of the equations onto a logarithmic or log-linear co-ordinate scale in 
the vertical is particularly important to ensure a high grid resolution in the near-bed region, where 
large vertical shears occur. The choice of staggered or non-staggered grid may be computationally 
important for certain computer architectures. 

Time discretization has been accomplished using the Crank-Nicolson method, giving a semi- 
implicit time-stepping algorithm. Although this method is unconditionally stable when used to 
integrate a diffusion equation, calculations showed that the stability of the numerical solution of 
the set of coupled hydrodynamic and turbulence energy equations depended upon the time 
discretization of the production and dissipation terms in the turbulence energy equation. 

Although it was not the intention in this paper to investigate the influence of mixing length on 
the solution (but rather to check that the difference scheme was accurate for a range of mixing 
lengths), it is interesting to note its influence upon the solution-a topic which merits further 
calculations under a range of z,-values. 

The finite difference scheme developed in this paper, with turbulence energy dissipation form C,  
is presently being used in a series of wave-current interaction problems and in a large-scale three- 
dimensional tidal simulation.' ' Results of these calculations will be reported in due course. 
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APPENDIX 

Here we briefly consider two difference forms of the term 

[ (:y +( ;>'I (39) 

which occurs in equation (25) and represents the generation of turbulent kinetic energy. 

determined at any time over a time step z from 
Defining two coefficients y1 and y 2  = 1 -yl such that O < y l  d 1 (see Section 3), (39) can be 

CYl(8U Pl IZ + Y 2 ( 6 W -  1 )'I + CY l(6 Wl l2 + Y 2 ( 6  G- 1 1'3 3 (40) 

with 6 a vertical difference operator (see Section 3). 
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An alternative to (40), which will be shown to have enhanced numerical stability and yield 
answers of similar accuracy, is given by 

For the case in which y 1  = y 2  =0.5, the turbulence production term is centred with respect to the 
time step T. With this choice of y1 and y2 it is evident that the difference form (41), by time 
averaging before squaring, will remove any time step oscillation in the production term, whereas 
(40), by squaring before time averaging, does not remove such an oscillation. This is probably the 
major reason why the difference scheme (41) was found preferable to (40) and was used in the 
calculations. 

The choice of difference scheme (40) or (41) is related to the ability of various difference schemes 
to conserve physical properties and is discussed by Lee et al.” 
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